AWARDS

疾患関連膜タンパク質を標的とした牛理的役割の解明

九州大学大学院薬学研究院生理学分野

加藤 百合 (第14回 入澤宏・彩記念若手研究奨励賞)

この度は、名誉ある第14回入澤宏・彩記念若手 研究奨励賞を賜り、光栄に思うと同時に身が引き 締まる思いです、選考委員の先生方をはじめ学会 関係者の方々に厚く御礼申し上げます.

疾患の発症時に生体内では遺伝子発現、タンパ ク質の機能、シグナル伝達、様々な変動が起きて います. 私は. その中でも特に膜タンパク質に着 目してこれまで研究を進めてきました.

慢性疼痛の発症には、 ヌクレオチドを伝達物質 とするプリン作動性化学伝達が重要であることが 知られていました. そこで、ATPを分泌小胞に輸 送する小胞型ヌクレオチドトランスポーター (VNUT) に着目し、精製・再構成による普遍的な トランスポーター輸送活性測定系を用いて阻害剤 の探索を行いました. その結果. 既承認薬 (ビス ホスホネート製剤:クロドロン酸) や必須栄養素 (EPA) が VNUT を非常に低濃度で阻害すること を同定し、これらの物質が ATP のシナプス小胞 内蓄積を抑制することで強力な鎮痛効果を示すこ とを明らかにしました.

次に、同じく膜タンパク質である TRPC3/6 チャネルに着目いたしました. これらのチャネル は受容体作動性の非選択的なカチオンチャネルで あり、全身に広く発現しています、しかし、TRPC3 と TRPC6 は相同性も高く輸送基質も似ているも のの、その生理作用には大きな違いがありました. TRPC3 は病態下で活性酸素産生酵素 (Nox2) と 複合体を形成し、Nox2 はユビキチン依存性の分 解を免れることで過剰なROSを産生します. TRPC3-Nox2 複合体形成促進が筋萎縮や COVID-19 感染後の心機能障害の憎悪に関わるこ とを明らかにいたしました. 一方, TRPC6 はユ ニークな性質を持っており、TRPC6の活性化によ り血管平滑筋細胞を増殖型へ、阻害することで収 縮型へと表現型を変換します。このメカニズムは 循環障害などの疾患に関与するのではないかと考 え、末梢血管を結紮した下肢虚血モデルマウスを 作製いたしました. その結果. TRPC6 阻害により 血管内皮障害が起きていても末梢の血流を改善で きることを明らかにし、末梢循環障害治療の新た な標的を提案いたしました。 現在は、心臓におけ る TRPC6 の生理的な役割に着目し、研究を進め ています.

最後に、これまでご指導して下さった先生方、 一緒に研究を行った方々に、この場をお借りして 感謝申し上げます. この受賞を励みに. 膜タンパ ク質を標的とした研究の発展に尽力していく所存 です.

略歴

2011年 岡山大学 薬学部 創薬科学科 卒業

2014年 岡山大学 自然生命科学研究支援セン ター 助教

2016年 岡山大学大学院 医歯薬学総合研究科 薬科学専攻 博士課程満期退学

2020年 九州大学大学院 薬学研究院 助教